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Abstract
With the growing capacity of modern healthcare systems, predictive analytics techniques are 
becoming increasingly powerful and more accessible. Careful consideration must be given to the 
whole process of prognostic model development and implementation to improve patient care in 
orthopaedics. Using the example of risk prediction models for total knee arthroplasty outcomes, 
the literature was reviewed to identify evidence and examples of factors associated with 
successfully taking predictive models from the computer and implementing them in the clinical 
environment where they can influence patient outcomes. There were 164 articles included after 
screening 439 abstracts, 37 of which reported models which had been implemented in the clinical 
environment. Six of these 37 articles reported some form of clinical impact evaluation, and five 
of the six evaluated the Risk Assessment and Prediction Tool (RAPT) for arthroplasty. These 
models demonstrated some positive impacts on clinical outcomes, such as decreased length of 
stay. However, the findings of this review demonstrate that only a small proportion of developed 
risk prediction models have been successfully implemented in the clinical environment where 
they can achieve this positive clinical impact.  
Level of evidence: Level 5
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Introduction
From patient selection to discharge planning, the shared decision-
making process between patient and surgeon can benefit from 
clinically informed multivariable prognostic models.1,2 A prognostic 
model is a statistical formula that takes patient characteristics and 
predicts an outcome, such as the Risk Assessment and Prediction 
Tool (RAPT),3 which predicts discharge destination following total 
knee arthroplasty (TKA) and total hip arthroplasty (THA). 

A powerful model predicts the outcome accurately, according to 
a range of metrics each measuring a specific aspect of predictive 
performance. Statistical predictive models can outperform clinicians’ 
predictive capability.4 This is potentially due to predictive models 
being less prone to clinicians’ biases, such as characteristics 
considered risk factors based on prior personal clinical experience 
alone. Predictive models are also able to process a greater 
amount of complex data and generate a prediction where clinicians 
would be unable to process the sheer volume and complexity of 
information.5 

Surgeons appreciate the benefit of using decision aids to enhance 
shared decision-making but have concerns over what to do 
with the information.6,7 Patients have demonstrated the ability to 
interpret even relatively complex information from decision aids 
if the information is presented in an informative and user-friendly 
manner.8 All key stakeholders must be engaged in a process of 
co-creation9 of a system that is created to identify appropriateness 
of care, predict outcomes, and guide treatment strategies, if 
predictive analytics is to make its promised impact on healthcare.10 
These stakeholders include researchers, clinicians, statisticians/
data scientists, hospital administrative and management staff, and 
patients/community members. 

The objective of risk prediction in the clinical context should be 
to achieve better patient outcomes by improving quality of care. 
Too often, research stops at predictive model development.11 To 
improve quality of care, this is not enough. Models need to be 
taken from the computer and implemented in the clinical setting, 
then evaluated and consistently re-evaluated to inform the process 
of updating the model to optimise its impact. 

https://orcid.org/0000-0002-0423-5822
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This review was contextualised by considering predictive models 
developed for TKA patients. TKA is a highly effective treatment for 
advanced osteoarthritis of the knee joint.12,13 The number of TKA 
procedures being performed each year continues to grow. The 
Australian Orthopaedic Association National Joint Replacement 
Registry (AOANJRR) Annual Report documented 61 154 TKA 
procedures performed in Australia in 2018.14 This reflected a 3.8% 
increase in primary TKA procedures from the previous year, and a 
156.2% increase since 2003. It is projected that the volume of TKA 
procedures will increase by 146% from 2013 to 2046 in Australia, 
based on a conservative estimate.15 The international estimates 
are even more impressive, with the demand for primary TKA 
procedures expected to increase by 673% in the 25 years leading 
up to 2030 in the United States.16 Patients consistently report 
improved quality of life, reduced pain and better function following 
the procedure.17 However, a substantial proportion of patients 
report dissatisfaction following TKA for a variety of reasons, 
including persistent pain and functional limitation.18,19 These are 
just some examples of outcomes for which predictive models can 
be developed as part of efforts to mitigate risk of unsatisfactory 
outcome and maximise the chance of a successful procedure and 
postoperative course.20-22 

The aim of this review was to identify evidence and examples 
of studies in the literature capturing the critical factors associated 
with TKA risk prediction models making the leap from desk to 
bedside and having a positive impact on clinical outcomes. Modern 
computing techniques can process a diverse range of modalities, 
including tabular data, images, video and audio. The focus of this 
review is on tabular data. This review builds upon recent work23 by 
exploring risk prediction models for TKA developed using machine 
learning as well as traditional statistical techniques. 

Structure of this review
This review is divided into the following sections:
•	 Literature search and inclusion criteria
•	 Overview of TKA outcome prediction models 
•	 TKA outcome prediction models implemented in 

clinical practice
•	 TKA outcome prediction models evaluated for their 

impact on quality of care
•	 Concluding remarks

Literature search and inclusion criteria 
A broad literature search was conducted in PubMed to 
identify studies reporting predictive models developed 
for TKA outcomes, using the following search strategy: 
((knee replacement[Title/Abstract]) OR (knee joint 
replacement[Title/Abstract]) OR (knee arthroplasty 
[Title/Abstract]) OR (knee joint arthroplasty[Title/
Abstract])) AND ((risk prediction[Title/Abstract]) OR 
(predictive model[Title/Abstract]) OR (prediction 
model[Title/Abstract]) OR (prediction[Title/Abstract])). 
This included both predictive model development studies 
as well as studies reporting on existing predictive models. 
Titles and abstracts were screened for studies which 
reported on predictive models for clinical outcomes 
following TKA. Studies which used only postoperative risk 
factors were excluded, as were studies which reported 
on outcomes related to implant design without a clinical 
focus such as implant failure. There was no restriction 
on date of publication. This was not a systematic review, 
therefore, the search strategy was intentionally broad 
and inclusive. 

Overview of TKA outcome prediction models
The total number of references retrieved was 439, with 164 included 
following title and abstract screening. The findings of the screening 
processes are presented in Table I. Outcomes were grouped into 
categories. Some studies reported multiple models for separate 
outcomes, or single models that were developed for multiple 
outcomes, hence some studies appear in the table multiple times. 

There has been increasing interest in machine learning (ML) 
throughout recent years in orthopaedics, generally,24,25 and 
specifically in TKA.26 This is illustrated in Figure 1. To generate 
this figure, a distinction was made between ML and non-machine 
learning models, often referred to as ‘traditional statistical models’, 
that had been used in prior literature.27 If a paper included both ML 
and non-machine learning models, it was counted as a machine 
learning paper for the purpose of Figure 1. 

With the explosion of research and development in artificial 
intelligence (AI) and ML over the past two decades, there is great 
excitement about their potential to outperform traditional statistical 
techniques, such as logistic regression, in terms of discriminative 
capability.28 ML is a subset of AI and refers to the process of enabling 
computers to learn from information and achieve a desired output 
without rules programmed explicitly by humans. The nature of ML 
is such that it enables model developers to arbitrarily include a vast 
range of predictors, which may improve the predictive ability of the 
model but may not be feasible to obtain manually in the clinical 
setting for most patients in diverse clinical contexts. Modern AI 
algorithms, specifically various forms of artificial neural networks, 
have shown immense potential in image-based29 and time-series 
analyses.30 As such, it is no surprise that there has been growing 
interest in applying these techniques to clinical risk prediction in 
healthcare.31,32

As patients journey through the modern healthcare system, data 
of increasing volume and granularity are being generated.33 This 
enables more accurate modelling of patients’ healthcare utilisation 
patterns – so-called ‘utilomics’33 – while generating a more detailed 
profile of individual patients.34 This facilitates individualised risk 

35

30

25

20

15

10

5

0

19
95

19
98

20
02

20
04

20
06

20
09

20
10

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

Year of publication

Statistical model Machine learning

Nu
m

be
r o

f p
ub

lic
at

io
ns

Figure 1. Total knee arthroplasty predictive model studies over time 
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prediction for more common outcomes based on subtle differences 
between the unique characteristics of each patient, contrasting 
traditional population-level risk scores.35 Another potential 
advantage is improved predictive accuracy for rarer outcomes.36 
ML is a promising avenue for predictive modelling, but it is not 
guaranteed to improve predictive performance. In a comprehensive 
review, ML and AI techniques did not outperform logistic regression 
in studies at low risk of bias.27 The power of ML lies in its ability 
to capture complex interactions and non-linear relationships in 
the data.21,37 Surgical risk may possess such qualities38 but not 
necessarily for every predictive model development task based 
on real-world datasets, which may not capture these underlying 
complexities in a computable form. Furthermore, ML facilitates the 
inclusion of many predictors, but it may be prudent to include as few 
variables as possible while retaining strong model performance; 
this because such models are more likely to be implementable in 
diverse clinical contexts, thus facilitating external validation and 
implementation in resource-poor settings.39 The key is to ensure 

clinically relevant and readily available predictors are retained in 
parsimonious models40 and to be clear from the outset what is the 
main priority: best statistical fit of the model to the data, or clinical 
applicability. Superior statistical fit may be achieved with a purely 
data-driven approach using ML algorithms without clinical insight, 
but if the gain in predictive performance is only slight then clinical 
applicability may be preferable.

As with surgery, in predictive modelling it is important to use 
the right tool for the job. Although prior literature can provide 
loose guidance when selecting which type of model to use, there 
is no single model architecture that will be best suited for every 
task.41-43 As such, trial and error are necessary. Multiple candidate 
models are compared using a range of metrics while accounting 
for other factors such as interpretability, and computational power 
required for model training. Most ML techniques are available in 
freely accessible packages for statistical software,44,45 enabling 
researchers to trial and tune different models with relative ease 
such that they do not need to decide which one to use a priori. 

Table I: Total knee arthroplasty predictive model studies by outcome category

Outcome category Studies (surname of first author) 

Length of stay (20 papers) Anis et al.;1 Johannesdottir et al.;2 Jorgensen et al.;3 Carr et al.;4 Turcotte et al.;5 Ong et al.;6 Wei et al.;7 Poitras 
et al.;8 Moore et al.;9 Cizmic et al.;10 aGkagkalis et al.;11 Gronbeck et al.;12 Han et al.;13 Li et al.;14 aMcCann-Spry 
et al.;15 Lopez et al.;16 aOeding et al.;17 Klemt et al.;18 Melfi et al.;19 Donovan et al.20

Pain (or pain relief) (16 papers) Pua et al.;21 Li et al.;22 Sanchez-Santos et al.;23 Shim et al.;24 Larsen et al.;25 Luna et al.;26 Vogel et al.;27 Lungu 
et al.;28 Tilbury et al.;29 Buus et al.;30 aTwiggs et al.;31 Anis et al.;1 Harris et al.;32 Arden et al.;33 Tolk et al.;34 
Dowsey et al.35

Function (35 papers) Pua et al.;21 Kim et al.;36 Twiggs et al.;37 Sanchez-Santos et al.;23 Shim et al.;24 Poitras et al.;8 Amano et al.;38 
Verbeek et al.;39 Pua et al.;40 Vissers et al.;41 Pua et al.;42 Vogel et al.;27 Schurman et al.;43 Hoogeboom et al.;44 
Lungu et al.;28 Chew et al.;45 Meessen et al.;46 Tilbury et al.;29 Bloomfield et al.;47 Buus et al.;30 Nankaku et al.;48 
Braaksma et al.;49 Pua et al.;50 aKatakam et al.;51 Turcotte et al.;52 Li et al.;53 Rondon et al.;54 Anis et al.;1 Harris 
et al.;32 Klemt et al.;55 Chen et al.;56 Barlow et al.;57 Arden et al.;33 Tolk et al.;34 Dowsey et al.35

Satisfaction (or dissatisfaction) (13 
papers)

Liu et al.;58 Van Onsem et al.;59 Kunze et al.;60 Zabawa et al.;61 Calkins et al.;62 Itou et al.;63 Garriga et al.;64 
Neuprez et al.;65 Van Onsem et al.;66 Kunze et al.;67 Munn et al.;68 Barlow et al.;57 aArden et al.33

Revision (7 papers) Andersen et al.;69 aStarr et al.;70 Inacio et al.;71 Mak et al.;72 Cuthbert et al.;73 Aram et al.;74 El-Galaly et al.75

Discharge destination (20 papers) aGoltz et al.;76 Dibra et al.;77 Dibra et al.;78 aCohen et al.;79 Pronk et al.;80 aHansen et al.;81 Klemt et al.;82 
aGkagkalis et al.;11 aLu et al.;83 Coudeyre et al.;84 Kugelman et al.;85 aOldmeadow et al.;86 Ayala et al.;87 Hadad 
et al.;88 Gholson et al.;89 Zeng et al.;90 Zalikha et al.;91 Menendez et al.;92 Ottenbacher et al.;93 Kapoor et al.94

Complications (28 papers) Yayac et al.;95 Meyer et al.;96 Abdul-Muhsin et al.;97 Klausing et al.;98 Mačiulienė et al.;99 Zhong et al.;100 Wang 
et al.;101 aHildén et al.;102 Harris et al.;103 Rudasil et al.;104 Seo et al.;105 Jorgensen et al.;106 Mulhall et al.;107 
Devana et al.;108 Chen et al.;109 Xie et al.;110 Xiao et al.;111 Wuerz et al.;112 Wu et al.;113 Chotanaphuthi et al.;114 
aJung et al.;115 Lewallan et al.;116 Inacio et al.;117 Inacio et al.;118 Xie et al.;119 Jaremko et al.;120 aKo et al.;121 
aWang et al.;122 Yeo et al.;123 Wang et al.;124 Trivedi et al.;125 Kapoor et al.;94 Hyer et al.126

Readmission (8 papers) Anis et al.;1 Ayers et al.;127 Mohammadi et al.;128 Mesko et al.;129 Goltz et al.;130 Bhavnani et al.;131 Kapoor et 
al.;94 Hyer et al.;126 aOeding et al.17

Transfusion (9 papers) To et al.;132 Pempe et al.;133 aJo et al.;134 Huang et al.;135 Ahmed et al.;136 Hu et al.;137 Huang et al.;138 Yeh et 
al.;139 Donovan et al.20

Quality of life (6 papers) Anis et al.;1 Tanaka et al.;140 Harris et al.;32 Huber et al.;141 Yakobov et al.;142 Arden et al.33

Mortality (8 papers) Trela-Larson et al.;143 Penfold et al.;144 Williams et al.;145 Harris et al.;103 Zalikha et al.;91 aWang et al.;122 
Villacorta Junior et al.;146 Melfi et al.;19 Kapoor et al.;94 Hyer et al.126

Postoperative care needs (rehabilitation 
and ICU) (5 papers)

Zeng et al.;147 Ditton et al.;148 Takagawa et al.;149 aKamath et al.;150 Dauty et al.151

Implant failure (4 papers) Gudnason et al.;152 Zhang et al.;153 Cuthbert et al.;154 aEllison et al.155

Periprosthetic joint infection (4 papers) Klemt et al.;156 Del Toro et al.;157 Sabry et al.;158 Zhang et al.159

Duration of operation (2 papers) Motesharei et al.;160 Hinterwimmer et al.161

Other (5 papers) Inpatient payments – Karnuta et al.162

Sciatic nerve block – Babazade et al.163

Postoperative opioid use – Klemt et al.164

Medicare ‘super-use’ – Hyer et al.126

KOOS (symptoms, recreation, Junior) – Harris et al.32

a Embedded model – i.e. implemented for use in the clinical setting (see Table II)
References: Appendix A (available online https://saoj.org.za/index.php/saoj/article/view/691)

https://saoj.org.za/index.php/saoj/article/view/691
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The important thing is to document, with accompanying computer 
code, the process of developing the model and the main candidate 
models from which the final model was selected, taking care 
to explain the rationale for this selection.46 Another important 
consideration is when the model will be used. For example, will 
the model be used at the point of consent or immediately prior to 
discharge? What data are available in the system at each of these 
time points? One must account for any delays between initial 
entry of raw data into the system and subsequent availability of 
processed data that can be used by the model. 

A more subtle and pervasive problem is class imbalance, in 
which the cases that the model is being developed to predict 
comprise a small minority of the observations in the dataset. 
This is a common feature of real-world medical datasets and ML 
algorithms are prone to problems with predictive accuracy for the 
minority class, which typically comprises the high-risk patients.47 
The consequences of failing to properly account for this common 
challenge has been illustrated in prior literature.48 In this example, 
failure to account for class imbalance – there were 260 positive 
cases and 10 923 negative controls – led to severely imbalanced 
accuracy, with almost 100% accuracy in predicting the majority 
(negative) class and only 0–10% for the minority class. The 
consequence is that up to 90% of patients with cancer would be 
misclassified (i.e. misdiagnosed) as not having cancer, which is 
obviously disastrous. Implementing a model without interrogating 
the results and accounting for such issues is therefore critical, and 
one must be transparent about how these issues are handled. 

TKA outcome prediction models implemented 
in clinical practice
It is difficult to implement predictive models in clinical practice. This 
is highlighted by the fact that only a minority (37/164 = 23%) of 
the models identified in this review (Table I) have been deployed 
in the clinical environment (see Table II). In keeping with the 
focus on inclusiveness prioritised throughout this review, the term 
‘implemented’ was used broadly to refer to any form of clinical 
implementation, including but not limited to the following: automatic 
data retrieval and risk calculation in the electronic medical record 
(EMR), online risk calculators, and depiction of nomograms in the 
publication reporting the predictive tool. In Table II, the specific 
outcomes predicted by the model detailed in the publication were 
listed, rather than the outcome categories in Table I. 

It is important to note that there are many valid reasons for 
which models in Table I were not, or could not, be implemented 
in clinical practice. For example, the model developers may have 
determined that their model did not perform well enough to justify 
implementation, or the teams developing these models were still in 
the process of engaging administrative, clinical and technical staff 
to implement the models. In any case, publishing the predictive 
model study prior to implementation is prudent because it enhances 
transparency around the specifications and performance of the 
model.49 It is also important that external validation of a model 
is conducted in a population similar to the target population for 
implementation.50,51 In the case of online risk calculators, published 
nomograms, and studies which include the full model coefficients or 
other specifications required for full independent implementation, 
it may be possible for interested parties to validate the model on 
their own data prior to implementation. However, readers should 
be wary of model developers who have a financial conflict of 
interest in the uptake of their model, especially in cases where the 
details required to fully reproduce the model are proprietary.52-54

In addition to engaging patients and clinicians, and working with 
them to build a predictive model both are willing to use in clinical 
decision-making, engaging members of the hospital administrative 
and information technology (IT) departments is equally important. 

Without the proper infrastructure in place, decision support tools 
can be seen as potentially useful but prohibitively unwieldy.55,56 
The more overtly negative outcome is that they are seen as an 
untrustworthy, potentially dangerous nuisance. Clinical staff may 
then use workarounds to maintain the status quo and avoid using 
the tool altogether.57 Ideally, the tool is integrated seamlessly into 
the existing clinical workflow and EMR systems.58 If this is not 
possible and changes must be made, such as alterations in the 
configuration of the tool or development of a separate application 
outside of the EMR system, then these changes should be 
minimal. The system must be user-friendly and accessible to users 
with varied levels of computer literacy. This is where education 
and training are critical in terms of what the tool can offer and 
what are the technical aspects involved in using it. This requires 
strong advocacy and leadership from clinicians, researchers and 
administrative staff. 

TKA outcome prediction models evaluated for 
their impact on quality of care
This is arguably the most important step. The aim of clinical 
predictive models should ultimately be to improve patient care. 
There are many different metrics available to assess statistical 
performance of predictive models.59 Compromises often need to 
be made to optimise performance on a selection of these metrics. 
For example, for some models it may be more important to sacrifice 
specificity in preference for higher sensitivity if the outcome of 
interest is life-threatening and therefore must be detected even 
if this results in the detection of a relatively high number of false 
positives.39 

Contrasting statistical evaluation is evaluating the model’s 
impact on quality of care. An obvious target for evaluation includes 
event rate, such as a reduction in mortality following deployment 
of a mortality prediction model.39 However, a more nuanced 
and comprehensive evaluation might be more informative.60 For 
example, hypothetically, if mortality does not decrease but using 
the model saves clinicians time in the discharge planning process 
and assists in the allocation of palliative care services to patients 
with the highest mortality risk, then the model might be useful even 
in the absence of reduced mortality. Accurate predictive models 
could also potentially reduce cognitive load for clinicians by giving 
them a better understanding of the patient’s risk profile even if the 
model does not predict the outcome with greater accuracy than the 
clinicians themselves. The model can be formally evaluated in a 
randomised controlled trial,46 but this is expensive and logistically 
challenging. Decision curve analysis can be used to provide a 
clinically informed, robust estimate of net benefit from using the 
model, and a clinical trial could be avoided if the model is unlikely 
to improve clinical outcomes.61 

A minority of studies in Table II underwent some sort of model 
evaluation (6/37 = 17%). These are depicted in Table III. Five of 
these six studies evaluated the RAPT.3 

Another way in which models can be useful is by improving 
the quality of shared decision-making between patient and 
surgeon,62-64 in part due to the increased amount of accurately 
calculated and quantified information pertaining to risks and 
outcomes. The patient and clinician could have more time in the 
consultation to discuss what is important to the patient based on 
their balanced risk of achieving a good outcome compared with 
experiencing complications. This informs their choice to proceed 
with surgery and how best to optimise their condition beforehand, 
maximising benefit and mitigating risk, and how to best plan for 
discharge and post-discharge follow-up.

Continued after Table III on page 20
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Table II: Total knee arthroplasty predictive models implemented into clinical practice 

Study Outcomes Method of implementation 

Goltz et al.1 Readmission Online tool: www.surgicalriskpredictions.com
aTwiggs et al.2 Pain at 12 months postop Patients filled out information on web-based ‘360 Knee System’ application on 

iPad in waiting room 
aCohen et al.3 Discharge destination Nursing staff recorded RAPT scores at preadmission appointment ~3 to 4 

weeks before surgery. Surgeons then discussed scores with patients in terms 
of impact on discharge disposition. Case management and physical therapy 
staff also accessed RAPT scores to further optimise discharge planning. 
Nomogram depicted in paper

Starr et al.4 Revision Online tool: http://www.bit.do/tka

Hansen et al.5 Discharge destination RAPT scores were prospectively captured, preoperatively, by the nurse case 
manager

Jo et al.6 Transfusion Online tool: http://safetka.net
aGkagkalis et al.7 Discharge destination; length of stay CAS: Patients were assessed daily with a French version of the CAS by a 

member of a physiotherapy team
RAPT: Patients completed RAPT questionnaire 

Hildén et al.8 Complications POSSUM and P-POSSUM scores were administered prospectively. 
•	 Preoperatively: orthopaedic surgeon collected the following variables when 

assessing the patient prior to surgery: cardiac and respiratory signs, ECG 
and surgical wound

•	 Postoperatively: orthopaedic surgeon assessed operation severity after 
surgery

All other POSSUM variables were collected automatically using integrated 
software. The software retrieved ICD-10 codes, surrogate variables, and 
personal information such as sex and age from the patient’s medical record.

Lu et al.9 Non-routine discharge Online tool: https://sportsmed.shinyapps.io/Nonroutine_Discharge_UKA/

Ellison et al.10 Implant failure Online tool (no URL provided) 
aMcCann-Spry et al.11 Length of stay (LOS) Patients were sent the RAPT questionnaire to complete at home prior to 

attending a class in which individual guided conversations were held to 
discuss patient scores. Patients with scores less than 6 were encouraged 
to discuss specific discharge planning needs and preferences after class to 
ensure the appropriate arrangements could be made regarding discharge 
planning.

aOldmeadow et al.12 Discharge destination (specifically, the need 
for extended inpatient rehabilitation)

Physiotherapist assessed risk using RAPT score at or before admission

Jung et al.13 Delirium Online tool: https://safetka.connecteve.com 

Kamath et al.14 ICU monitoring Unclear (bespoke predictive model implemented at a single institution)

Arden et al.15 Pain; function; quality of life; satisfaction; 
implant failure

Implemented in two hospitals as part of a prospective observational study
Preoperative visits: After deciding to participate in the study, patients are 
contacted by a member of the research team. Patients bring a completed 
‘self-assessment for inpatient surgery’ form to the research appointment, and 
during this appointment they sign a consent form. The following additional 
tests are undertaken: whole-body DEXA, physical assessment, blood test, 
urine sample
Inpatient data and sample collection: COASt collects inpatient data and 
intraoperative samples

Ko et al.16 Acute kidney injury Online tool: https://safetka.net

Wang et al.17 Major complications (deep wound infection, 
pneumonia, renal insufficiency or failure, 
cerebrovascular accident, cardiac arrest, 
myocardial infarction, pulmonary embolism, 
sepsis, or death)

Scoring systems depicted in the publication

aOeding et al.18 Inpatient vs outpatient status; readmission On file in EMR at the study institution

Katakam et al.19 Function Online tool: https://sorg-apps.shinyapps.io/tka_koos_mcid/
a Impact evaluation carried out (see Table III); RAPT = Risk Assessment and Prediction Tool; CAS = Cumulated Ambulation Score; POSSUM = Physiological and Operative 
Severity Score for the numeration of Mortality and morbidity; P-POSSUM = Portsmouth-POSSUM;  ECG = electrocardiogram; DEXA = dual-energy X-ray absorptiometry; COASt 
= Clinical Outcomes in Arthroplasty Study; EMR = electronic medical record
References: Appendix B (available online https://saoj.org.za/index.php/saoj/article/view/691)

https://saoj.org.za/index.php/saoj/article/view/691
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Table III: Total knee arthroplasty predictive models which have undergone impact evaluation

Study Impact evaluation methodology Impact per outcome

Twiggs et al.1 Consecutive case series validation:
First cohort = patients filled out the questionnaire. 
The surgeon and patient were blinded to the 
outputs of the tool and consulted for TKA surgery 
per normal practice. 
Second cohort = the surgeon and patient were 
exposed to the outputs of the tool during the 
consultation for TKA surgery. 
Statistical validation: 
A data audit was conducted of all patients who 
had been consulted with the prediction tool 
since February 2016, selected for surgery, 
and consented and answered a 12-month 
postoperative KOOS questionnaire. There were 
two predictions of interest: absolute change in 
pain score predicted and achieved following 
surgery (analysed as a correlation), and the 
binary prediction of change greater than or equal 
to the MCID of KOOS pain. 

Use of the tool’s predictions did not significantly change the number of 
patients booked for TKA surgery.
However, before introduction of the tool there was no difference between 
patients booked for surgery and those not booked for surgery in terms of 
patient-communicated pain state, while after introduction of the tool there 
was a significant difference in patient-communicated pain between those 
booked for surgery and those not booked for surgery.

Oldmeadow et al.2 Impact of RAPT score implementation was 
evaluated according to three outcomes: 
discharge destination, length of stay (LOS), and 
readmission rates.
The score for the prospective group was 
calculated during the preadmission evaluation. 
Data collected at discharge included discharge 
destination (home or rehabilitation) and LOS 
(days from admission to discharge).

LOS: There was a decrease in LOS in each RAPT risk level.
Discharge destination: Logistic regression analysis was used to examine the 
effects of age, sex, arthroplasty type, LOS, and RAPT score on discharge 
destination. For cohort 2, only one factor – the RAPT score – had a 
significant effect on discharge destination.
Readmission rate: There was no increase in readmission rates.

McCann-Spry et al.3 RAPT implementation was part of a broader 
interdisciplinary effort to reduce LOS. 
A list of local subacute rehabilitation and home 
care agencies was provided to all patients, along 
with a ‘frequently asked questions’ sheet to help 
patients explore options for facilities.
Decisions made at the class were communicated 
to hospital care management staff for reference 
when the patient arrived at the inpatient unit 
postoperatively.
The impact of the interdisciplinary programme 
was evaluated in four ways: LOS, cost, early 
postoperative ambulation, and patient likelihood 
to recommend the CJR.

Decrease in LOS: Decrease in LOS in January 2014 for TKA patients – this 
was after pilot implementation of POD 0 physical rehabilitation programme 
– and April 2014, which was after all providers and staff were fully educated 
about new LOS expectations. 
Ten continuous months of LOS data below the previous 2013 average 
resulted in a process shift in average LOS of 0.5 days. Complications and 
readmission rates were tracked as separate performance improvement 
measures – these did not increase.
Cost: The average decrease of 0.5 days per patient generated cost savings 
of approximately $400 per patient after all interventions were implemented. 
Early postoperative ambulation:
In a 1-month follow-up study conducted in June 2015, physical therapists 
were able to evaluate patients an average of 2 hours sooner than before, and 
patients stated that they felt less pain on the subsequent day after receiving 
POD 0 therapy.
Also, some patients were able to receive a second therapy session on the 
day of surgery. 
Patient likelihood to recommend CJR: Decreasing the LOS did not result 
in a decrease in patients’ likelihood to recommend the CJR. The CJR has 
consistently exceeded expectations for the question, ‘would you recommend 
this hospital to your friends and family?’

Gkagkalis et al.4 Analysis conducted to detect significant 
difference in hospital LOS between patients with 
CAS < 11 and CAS ≥ 11. Comparison was also 
made regarding discharge destination based on 
this score cut-off.
RAPT was analysed as a continuous variable for 
its association with hospital LOS and discharge 
destination.

Discharge destination:
CAS: Most (85.7%) patients with CAS < 11 were sent to a rehabilitation 
centre on discharge. In contrast, only 24.1% of patients with CAS ≥ 11 were 
sent to a rehabilitation centre (p < 0.001). 
RAPT: The association between discharge destination and RAPT as a 
continuous variable was strongly significant (p < 0.001). 
Length of stay:
CAS: The relationship between the CAS 11 score and hospital LOS was not 
significant (p = 0.107). 
RAPT: The relationship between the RAPT score and hospital LOS was also 
not significant (p = 0.64).

Cohen et al.5 Primary TJA patients at a single academic 
centre before (pre-RAPT) and after (post-RAPT) 
implementation of the RAPT score were 
compared.

Implementation of RAPT score significantly decreased hospital LOS from 
2.22 (pre-RAPT) to 1.82 days (post-RAPT). The proportion of patients 
discharged to a facility was also significantly reduced (from 21.8% to 15.2%) 
without an increased rate of readmission or adverse events.
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Beyond the interaction between patient and surgeon, predictive 
models could positively impact discussions between clinicians. 
Multidisciplinary team meetings held for high-risk patients with 
complex surgical needs or complicated risk profiles, could benefit 
from the utilisation of patient-specific predictive models designed 
to give a better understanding of the patient’s risks for specific 
outcomes.65 This is especially pertinent in light of recent evidence 
demonstrating that a digital platform depicting patient-specific 
information had a positive effect on efficiency in multidisciplinary 
team meetings for prostate cancer patients.66 

In this age of big data and immensely powerful ML models, 
there is increasing interest in powerful and generalisable predictive 
models that can be relied upon when implemented in a broad 
variety of clinical settings, such as hospitals and clinics of various 
sizes with different computer system infrastructures. However, 
the benefit of bespoke risk prediction models, taking advantage 
of the unique aspects of a single institution’s data collection, has 
been demonstrated.67 The growing availability of large clinical and 
administrative datasets is an opportunity for the advancement of 
ML in clinical predictive analytics, but concerns have been raised 
that too little focus is currently given to the quality of data used to 
build such models.68 Having a well-described, robust data collection 
method boosts confidence in the reliability of predictive models 
built using the data, as there is transparency around the data 
collection and auditing processes. It also facilitates implementation 
and external validation of the model in different clinical settings by 
enabling comparison of the data used to build the model with that 
which is available in different settings.46 

Conclusion
There has been an increase in the number of predictive model 
development studies for post-surgery outcomes following TKA over 
the past 20 years, with machine learning increasingly being utilised. 
However, only a minority of models have been implemented in the 
live clinical environment, and fewer still have been evaluated to 
determine whether they are having a positive or deleterious impact 
on clinical outcomes or shared clinical decision-making. This 
demonstrates how difficult it can be to implement risk prediction 
models in the clinical setting, and then evaluate their impact in 
a nuanced and comprehensive manner. Implementing models, 
and evaluating their impact, requires stakeholder engagement 
at multiple levels, including hospital administrative and IT staff, 
clinicians, patients and research staff experienced in clinical trials. 
As important as it is to optimise algorithmic performance and drive 
the technical development of risk prediction techniques, it is time 
to shift focus in the clinical setting to implementation and ongoing 
evaluation of such tools. This is necessary to enable them to do 
what they are supposed to do, which is improve quality of care and 
increase efficiency of personalised data processing so the patient 
and clinician can focus on the human connection.
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